COMP 122/L Lecture 1

Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

Motivation

Why are things still slow?

The magic box isn't so magic

The Point

- If you really want performance, you need to know how the magic works
 - Chrome is fast for a reason
- If you want to write a naive compiler, you need to know some low-level details
- If you want to write a *fast* compiler, you need to know *tons* of low-level details

So Why Circuits?

So Why Circuits?

So Why Circuits?

- Basically, circuits are the programming language of hardware
 - Yes, everything goes back to physics

Working with Different Bases

What's In a Number?

Question: why exactly does 123 have the value 123? As in, what does it mean?

What's In a Number? 123

What's In a Number?

Another View 123

Another View

- Involves repeated division by the value of the base
 - From right to left: list the remainders
 - Continue until 0 is reached
 - Final value is result of reading remainders from bottom to top
- For example: what is 231 decimal to decimal?

23 I

Now for Binary

- Binary is base 2
- Useful because circuits are either on or off, representable as two states, 0 and 1

Now for Binary 1010

Now for Binary

Answer

• What is binary 0101 as a decimal number?

• 5

57

Hexadecimal

- Base 16
- Binary is horribly inconvenient to write out
- Easier to convert between hexadecimal (which is more convenient) and binary
 - Each hexadecimal digit maps to four binary digits
 - Can just memorize a table

Hexadecimal

Digits 0-9, along with A(10), B (11), C (12), D (13), E (14), F (15)

Hexadecimal Example

• What is IAF hexadecimal in decimal?

Hexadecimal to Binary

- Previous techniques all work, using decimal as an intermediate
- The faster way: memorize a table (which can be easily reconstructed)

Hexadecimal to Binary

Hexadecimal	Binary	Hexadecimal	Binary
0	0000	8	1000
I	0001	9	1001
2	0010	A (10)	1010
3	0011	B (11)	1011
4	0100	C (12)	1100
5	0101	D (13)	1101
6	0110	E (14)	1110
7	0111	F (15)	