COMP I22/L Lecture I

Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

Motivation
public static void
main(String[] args)
\} •••
public static void main(String[] args) \{ - • •
$\}$

public static void
main(String[] args) \{
-••
\}

$$
\varliminf_{3.1956}
$$

Why are things still slow?

The magic box isn't so magic

The Point

- If you really want performance, you need to know how the magic works
- Chrome is fast for a reason
- If you want to write a naive compiler, you need to know some low-level details
- If you want to write a fast compiler, you need to know tons of low-level details

So Why Circuits?

So Why Circuits?

So Why Circuits?

- Basically, circuits are the programming language of hardware
- Yes, everything goes back to physics

Working with Different Bases

What's In a Number?

- Question:why exactly does 123 have the value 123 ? As in, what does it mean?

What's In a Number?

123

What's In a Number?

1	2	3

What's In a Number?

1	2	3
Hundreds	Tens	Ones

What's In a Number?

Question

- Why did we go to tens? Hundreds?

Answer

- Because we are in decimal (base 10)

Another View

123

Another View

1	2	3

Another View

1	2	3
1×10^{2}	2×10^{1}	3×10^{0}

Conversion from Some Base to Decimal

- Involves repeated division by the value of the base
- From right to left: list the remainders
- Continue until 0 is reached
- Final value is result of reading remainders from bottom to top
- For example:what is 231 decimal to decimal?

Conversion from Some Base to Decimal

231

Conversion from Some Base to Decimal

\author{

- \quad Remainder
}

Conversion from Some Base to Decimal

Conversion from Some Base to Decimal

Now for Binary

- Binary is base 2
- Useful because circuits are either on or off, representable as two states, 0 and I

Now for Binary

1010

Now for Binary

Now for Binary

Now for Binary

Question

- What is binary OIO as a decimal number?

Answer

- What is binary 010 I as a decimal number?
- 5

From Decimal to Binary

- What is decimal 57 to binary?

From Decimal to Binary

57

From Decimal to Binary

Hexadecimal

- Base 16
- Binary is horribly inconvenient to write out
- Easier to convert between hexadecimal (which is more convenient) and binary
- Each hexadecimal digit maps to four binary digits
- Can just memorize a table

Hexadecimal

- Digits 0-9, along with $\mathrm{A}(\mathrm{I} 0), \mathrm{B}(\mathrm{II}), \mathrm{C}(\mathrm{I} 2)$, D (I3), E (I4), F (I5)

Hexadecimal Example

- What is IAF hexadecimal in decimal?

Hexadecimal Example

Hexadecimal Example

I	A	F
Two-fifty-sixes	Sixteens	Ones

Hexadecimal Example

I	A	F
Two-fifty-sixes	Sixteens	
1×16^{2}	10×16^{1}	Ones

Hexadecimal Example

I	A	F
Two-fifty-sixes	Sixteens	Ones
1×16^{2}	10×161	15×16^{0}
		11111
	$\begin{array}{lllll}16 & 16 & 16 & 16 & 16 \\ 16 & 16 & 16 & 16 & 16\end{array}$	11111
256	(160)	I I I I I (I5)

Hexadecimal to Binary

- Previous techniques all work, using decimal as an intermediate
- The faster way: memorize a table (which can be easily reconstructed)

Hexadecimal to Binary

Hexadecimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Hexadecimal	Binary
8	1000
9	1001
$\mathrm{~A}(10)$	1010
$\mathrm{~B} \mathrm{(II)}$	1011
$\mathrm{C}(\mathrm{I} 2)$	1100
$\mathrm{D}(13)$	1101
$\mathrm{E}(\mathrm{I} 4)$	1110
$\mathrm{~F}(\mathrm{I} 5)$	111 I

